Satura rādītājs:

Linuss Paulings Amerikas zinātnieks
Linuss Paulings Amerikas zinātnieks

Public Lecture: Reconstructing ancient human history from DNA (Maijs 2024)

Public Lecture: Reconstructing ancient human history from DNA (Maijs 2024)
Anonim

Linuss Polsings, pilnībā Linuss Karls Paulings (dzimis 1901. gada 28. februārī Portlendā, Oregonas štatā, miris 1994. gada 19. augustā, Lielajā Surā, Kalifornijā), amerikāņu teorētiskais fiziķis, kurš kļuva par vienīgo cilvēku, kurš ieguvis divas nedalītas Nobela prēmijas.. Viņa pirmā balva (1954) tika piešķirta par pētījumiem par ķīmiskās saites raksturu un izmantošanu molekulārās struktūras noskaidrošanā; otrais (1962) atzina viņa centienus aizliegt kodolieroču izmēģināšanu.

Agrīnā dzīve un izglītība

Pauling bija pirmais no trim bērniem un vienīgais farmaceita Herman Pauling un dēla Lucy Isabelle (Darling) Pauling, farmaceita meita, dēls. Pēc savas agrīnās izglītības Kondonā un Portlendā, Oregonas štatā, viņš apmeklēja Oregonas Lauksaimniecības koledžu (tagadējā Oregonas Valsts universitāte), kur tikās ar Ava Helēnu Milleru, kura vēlāk kļūs par viņa sievu, un kur ieguva zinātņu bakalaura grādu ķīmiskās inženierijas summā. cum laude 1922. gadā. Pēc tam viņš apmeklēja Kalifornijas Tehnoloģiju institūtu (Caltech), kur Roskoe G. Dikinsons viņam parādīja, kā noteikt kristālu struktūras, izmantojot rentgena starus. Viņš saņēma doktora grādu 1925. gadā par disertāciju, kas iegūta no viņa kristāla struktūras dokumentiem. Pēc neilga laika, būdams Nacionālais pētnieks, viņš saņēma Gugenheima stipendiju, lai studētu kvantu mehāniku Eiropā.Lielāko 18 mēnešu daļu viņš pavadīja Arnolda Sommerfelda Teorētiskās fizikas institūtā Minhenē, Vācijā.

Molekulāro struktūru likvidēšana

Pabeidzis pēcdoktorantūras studijas, Polings 1927. gadā atgriezās Kaltehā. Tur viņš uzsāka garu mācību un pētniecības karjeru. Ķīmiskās struktūras analīze kļuva par viņa zinātniskā darba galveno tēmu. Izmantojot rentgena difrakcijas paņēmienu, viņš noteica atomu trīsdimensiju izvietojumu vairākos svarīgos silikāta un sulfīda minerālos. 1930. gadā ceļojuma laikā uz Vāciju Paulings uzzināja par elektronu difrakciju un pēc atgriešanās Kalifornijā izmantoja šo elektronu izkliedes paņēmienu no molekulu kodoliem, lai noteiktu dažu svarīgu vielu struktūras. Šīs strukturālās zināšanas palīdzēja viņam izstrādāt elektronegativitātes skalu, kurā viņš piešķīra skaitli, kas apzīmē konkrēta atoma spēku piesaistīt elektronus kovalentā saitē.

To complement the experimental tool that X-ray analysis provided for exploring molecular structure, Pauling turned to quantum mechanics as a theoretical tool. For example, he used quantum mechanics to determine the equivalent strength in each of the four bonds surrounding the carbon atom. He developed a valence bond theory in which he proposed that a molecule could be described by an intermediate structure that was a resonance combination (or hybrid) of other structures. His book The Nature of the Chemical Bond, and the Structure of Molecules and Crystals (1939) provided a unified summary of his vision of structural chemistry.

The arrival of the geneticist Thomas Hunt Morgan at Caltech in the late 1920s stimulated Pauling’s interest in biological molecules, and by the mid-1930s he was performing successful magnetic studies on the protein hemoglobin. He developed further interests in protein and, together with biochemist Alfred Mirsky, Pauling published a paper in 1936 on general protein structure. In this work the authors explained that protein molecules naturally coiled into specific configurations but became “denatured” (uncoiled) and assumed some random form once certain weak bonds were broken.

On one of his trips to visit Mirsky in New York, Pauling met Karl Landsteiner, the discoverer of blood types, who became his guide into the field of immunochemistry. Pauling was fascinated by the specificity of antibody-antigen reactions, and he later developed a theory that accounted for this specificity through a unique folding of the antibody’s polypeptide chain. World War II interrupted this theoretical work, and Pauling’s focus shifted to more practical problems, including the preparation of an artificial substitute for blood serum useful to wounded soldiers and an oxygen detector useful in submarines and airplanes. J. Robert Oppenheimer asked Pauling to head the chemistry section of the Manhattan Project, but his suffering from glomerulonephritis (inflammation of the glomerular region of the kidney) prevented him from accepting this offer. For his outstanding services during the war, Pauling was later awarded the Presidential Medal for Merit.

While collaborating on a report about postwar American science, Pauling became interested in the study of sickle-cell anemia. He perceived that the sickling of cells noted in this disease might be caused by a genetic mutation in the globin portion of the blood cell’s hemoglobin. In 1949 he and his coworkers published a paper identifying the particular defect in hemoglobin’s structure that was responsible for sickle-cell anemia, which thereby made this disorder the first “molecular disease” to be discovered. At that time, Pauling’s article on the periodic law appeared in the 14th edition of Encyclopædia.

While serving as a visiting professor at the University of Oxford in 1948, Pauling returned to a problem that had intrigued him in the late 1930s—the three-dimensional structure of proteins. By folding a paper on which he had drawn a chain of linked amino acids, he discovered a cylindrical coil-like configuration, later called the alpha helix. The most significant aspect of Pauling’s structure was its determination of the number of amino acids per turn of the helix. During this same period he became interested in deoxyribonucleic acid (DNA), and early in 1953 he and protein crystallographer Robert Corey published their version of DNA’s structure, three strands twisted around each other in ropelike fashion. Shortly thereafter James Watson and Francis Crick published DNA’s correct structure, a double helix. Pauling’s efforts to modify his postulated structure had been hampered by poor X-ray photographs of DNA and by his lack of understanding of this molecule’s wet and dry forms. In 1952 he failed to visit Rosalind Franklin, working in Maurice Wilkins’s laboratory at King’s College, London, and consequently did not see her X-ray pictures of DNA. Frankin’s pictures proved to be the linchpin in allowing Watson and Crick to elucidate the actual structure. Nevertheless, Pauling was awarded the 1954 Nobel Prize for Chemistry “for his research into the nature of the chemical bond and its application to the elucidation of the structure of complex substances.”